Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants--stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco.

نویسندگان

  • Hiroshi Yamamoto
  • Hideki Kato
  • Yuki Shinzaki
  • Sayaka Horiguchi
  • Toshiharu Shikanai
  • Toshiharu Hase
  • Tsuyoshi Endo
  • Minori Nishioka
  • Amane Makino
  • Ken-Ichi Tomizawa
  • Chikahiro Miyake
چکیده

We tested the hypothesis that ferredoxin (Fd) limits the activity of cyclic electron flow around PSI (CEF-PSI) in vivo and that the relief of this limitation promotes the non-photochemical quenching (NPQ) of Chl fluorescence. In transplastomic tobacco (Nicotiana tabacum cv Xanthi) expressing Fd from Arabidopsis (Arabidopsis thaliana) in its chloroplasts, the minimum yield (F(o)) of Chl fluorescence was higher than in the wild type. F(o) was suppressed to the wild-type level upon illumination with far-red light, implying that the transfer of electrons by Fd-quinone oxidoreductase (FQR) from the chloroplast stroma to plastoquinone was enhanced in transplastomic plants. The activity of CEF-PSI became higher in transplastomic than in wild-type plants under conditions limiting photosynthetic linear electron flow. Similarly, the NPQ of Chl fluorescence was enhanced in transplastomic plants. On the other hand, pool sizes of the pigments of the xanthophyll cycle and the amounts of PsbS protein were the same in all plants. All these results supported the hypothesis strongly. We conclude that breeding plants with an NPQ of Chl fluorescence increased by an enhancement of CEF-PSI activity might lead to improved tolerance for abiotic stresses, particularly under conditions of low light use efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.

Cold-induced inhibition of CO(2) assimilation in maize (Zea mays L.) is associated with a persistent depression of the photochemical efficiency of PSII. However, very limited information is available on PSI photochemistry and PSI-dependent electron flow in cold-stressed maize. The extent of the absorbance change (ΔA(820)) used for in vivo quantitative estimation of photooxidizable P700(+) indic...

متن کامل

A security network in PSI photoprotection: regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow

Cyclic electron flow (CEF) around PSI regulates acceptor-side limitations and has multiple functions in the green alga, Chlamydomonas reinhardtii. Here we draw on recent and historic literature and concentrate on its role in Photosystem I (PSI) photoprotection, outlining causes and consequences of damage to PSI and CEF's role as an avoidance mechanism. We outline two functions of CEF in PSI pho...

متن کامل

Sustained Diurnal Stimulation of Cyclic Electron Flow in Two Tropical Tree Species Erythrophleum guineense and Khaya ivorensis

The photosystem II (PSII) activity of C3 plants is usually inhibited at noon associated with high light but can be repaired fast in the afternoon. However, the diurnal variation of photosystem I (PSI) activity is unknown. Although, cyclic electron flow (CEF) has been documented as an important mechanism for photosynthesis, the diurnal variation of CEF in sun leaves is little known. We determine...

متن کامل

Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light

In higher plants, moderate photoinhibition of photosystem II (PSII) leads to a stimulation of cyclic electron flow (CEF) at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these q...

متن کامل

Characterization of the Novel Photosynthetic Protein PPP7 involved in Cyclic Electron Flow around PSI

Photosynthetic organisms are able to convert light energy into chemical energy by the operation of the two photosystems, the cytochrome b 6 /f complex and the ATPase. The two photosystems operate in series during linear electron flow to split H 2 O and to generate NADP +. During electron transport, a pH gradient is generated across the thylakoid membrane which is used for the generation of ATP....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 47 10  شماره 

صفحات  -

تاریخ انتشار 2006